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Abstract. A crystal surface which is miscut with respect to a high-symmetry plane exhibits
steps with a characteristic distance. It is argued that the continuum description of growth on
such a surface, when desorption can be neglected, is given by the anisotropic version of the
conserved KPZ equation with non-conserved noise. A one-loop dynamical renormalization group
calculation yields the values of the dynamical exponent and the roughness exponent which are
shown to be the same as in the isotropic case. The results presented here should particularly
apply to growth under conditions which are typical for molecular beam epitaxy.

The fabrication of novel electronic devices requires experimental conditions which are highly
controllable. Molecular beam epitaxy (MBE) is a very valuable technology for this purpose.
In this process particles are deposited under high-vacuum conditions onto a crystal surface
which has usually been cleaved prior to growth. The cleavage process may generate a
surface which is miscut against a high-symmetry plane and which exhibits terraces with a
characteristic width. The terrace size can be made very large, but a small miscut can never
be avoided. Therefore the surface at the beginning of the growth process must always be
regarded asvicinal.

Since desorption of adatoms can be neglected under experimental conditions which are
typical for MBE, surface relaxation by adatom diffusion is volume conserving. This paper
introduces the continuum description of suchconservedgrowth on a vicinal surface. This
allows for the analysis of the stochastic fluctations of the surface, which appear on large
length and timescales during growth. The surface fluctuations, apart from being of interest
in their own right, may be intimately related to the damping of oscillations observed during
layer-by-layer growth, as has been shown recently [1, 2].

The surface fluctuations are expected to exhibit self-affine scaling [3]:

w(t) ' a⊥(ξ(t)/ ˜̀)ζ and ξ(t) ' ˜̀(t/t̃)1/z (1)

if the surface is isotropic. Herew is the root-mean-square variation of the film thickness
(the surface width),a⊥ is the thickness of one atomic layer, andξ is the correlation length
up to which the surface roughness has fully developed until timet . ζ is the roughness
exponent andz the dynamical exponent. The layer coherence length˜̀ and the oscillation
damping timet̃ [1] play the roles of natural cut-offs in the continuum description of the
surface fluctuations at small length and timescales. To calculate the values ofz andζ , we
derive the equation governing conserved growth on vicinal surfaces next.

On a coarse-grained scale the surface can be described at any given timet by a single-
valued functionh(x‖, x⊥, t). The coordinate system is chosen such that the surface tilt ism

in thex‖-direction, while the steps are along thex⊥-direction. It is then convenient to work
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in a tilted coordinate system,h → h − mx‖, so thath represents the surface fluctuations
around the average tilt. Since we consider conserved growth, the evolution equation for the
surface has the form

∂th = −∇ · j + η + F (2)

with a surface diffusion currentj and a noise termη which models the disorder entering
the mesoscopic description (2) due to the stochastic nature of the growth process. With the
abbreviations∂‖ ≡ ∂/∂x‖ and∂⊥ ≡ ∂/∂x⊥, the vector∇ reads(∂‖, ∂⊥). F is the average
particle flux which is formally eliminated by changing to the comoving frame,h→ h−F t .
All lattice constants are set to unity for convenience.

The surface diffusion current has an equilibrium contribution and a non-equilibrium
contribution,j = jeq+ jneq. jeq is given by the tendency of the adatom current to even out
gradients in the local equilibrium chemical potentialneq of the surface,jeq = −0∇neq. 0
is the adatom mobility, which for simplicity is assumed to be isotropic.neq depends onh
like

neq= −
(κ‖
0
∂2
‖ +

κ⊥
0
∂2
⊥
)
h. (3)

κ‖/0 andκ⊥/0 are the anisotropic surface stiffnesses [4–6], which for small variations of
the surface can be regarded as constant. Equation (3) represents the Gibbs–Thomson effect.

The non-equilibrium contributionjneq = −D∇nneq to the surface current is driven by
the non-equilibrium adatom densitynneq [7]. D is the (isotropic) diffusion constant. On a
flat surface without steps,n0 is of the order of(F/D)`2

D, as derived in [8].̀ D denotes the
typical island distance on a flat surface [9]. We assume`D to be isotropic, which is the case
if diffusion and lateral bonding of adatoms to islands is isotropic. When steps are present
and the tilt is strong enough to suppress island nucleation on terraces, i.e. if|m|`D & 1, n0

depends on the local surface tilt:n0 ∝ (F/D)/|m|2. A convenient ansatz for interpolation
between those two regimes is [10]

nneq(∇h) = n0

1+ `2
D[(m+ ∂‖h)2+ (∂⊥h)2]

(4)

in our coordinate system.nneq can be expanded for small deviations from the global tilt to
give

nneq(∇h) ' nneq(0)− µ‖
D
∂‖h− λ‖

D
(∂‖h)2− λ⊥

D
(∂⊥h)2 (5)

with the quantitiesnneq(0), µ‖, andλ⊥ being positive functions of|m|, n0, and`D. For small
tilts, |m|`D . 1, λ‖ is positive, while for large tilts,|m|`D & 1, it is negative. These two
cases distinguish between nucleation-dominated growth and step-flow growth, respectively.
The different signs of the nonlinearities are known to have dramatic consequences on the
surface fluctuations in the case of non-conserved growth on vicinal surfaces, which is
described by the anisotropic KPZ equation [11]. One aim of this study is to see if a similar
scenario can be found in the conserved case.

The noiseη has three contributions in MBE growth [9]: shot noise, diffusion noise, and
nucleation noise. Shot noise arises due to statistical fluctuations in the atom beam which
can be assumed to be isotropic. Diffusion noise has its origin in the stochastic motion
of adatoms. Since we assume diffusion to be isotropic, this contribution is also isotropic.
Finally, nucleation noise describes the random distribution of island nucleation locations.
Because diffusion noise and shot noise together generate nucleation noise, the latter is
also isotropic. In [12] it has been shown that nucleation noise is long-range correlated in
time as long as the surface grows layerwise. The continuum approach we pursue here is
applicable for times larger than the oscillation damping time, which marks the transition
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from layer-by-layer growth to rough growth. After this time, the temporal correlations have
ceased. Therefore we can assume nucleation noise to be short-range correlated in time for
the present purpose. Note also that despite their relation on the microscopic level, there
are no correlations between the different kinds of noise. With these remarks, the noise
correlator reads [9, 13]

〈η(x, t)η(y, s)〉 = [F −D∇2+N (∇2)2]δ2(x − y)δ(t − s) (6)

whereF , D, andN denote the strengths of the shot noise, the diffusion noise, and the
nucleation noise, respectively. The average value〈η〉 vanishes.

In summary, we arrive at the anisotropic conserved KPZ (ACKPZ) equation

∂th = −∇2[(κ‖∂2
‖ + κ⊥∂2

⊥)h+ µ∂‖h+ λ‖(∂‖h)2+ λ⊥(∂⊥h)2] + η (7)

where the noise correlator is given by equation (6). Note that the linear term proportional to
µ cannot be transformed away as in the non-conserved case [11]. This equation withµ = 0
was first studied in [14]. However, as the following analysis shows, the conclusion presented
there has to be corrected. We study the surface fluctuations predicted by equation (7) next.

In the linear caseλ‖ = λ⊥ = 0, equation (7) can be solved directly. One result is that
the term∝ µ does not influence the surface fluctuations. Settingµ = 0, we may obtain the
values of the exponents by rescaling

x⊥ → bx⊥ x‖ → bχx‖ t → bzt h→ bζh (8)

whereb is an arbitrary scaling factor [15]. The anisotropy exponentχ [11, 16] has to be
introduced here to account for the fact that in contrast to equation (1), which is isotropic,
there may be different characteristic lengthsξ‖ and ξ⊥ governing the morphology of the
surface.χ is defined by the relationξ‖ ∝ ξχ⊥ . By writing b = exp(d`) with infintesimal d̀ ,
we obtain

dκ‖
d`
= κ‖(z− 4χ) (9)

drκ
d`
= 4rκ(1− χ) (10)

dF
d`
= F(z− 2ζ − 2) (11)

dD
d`
= D(z− 2ζ − 4) (12)

dN
d`
= N (z− 2ζ − 6) (13)

for the change of the parameters in the continuum equation upon rescaling, whererκ ≡
κ‖/κ⊥. From equations (11)–(13) we see that shot noise is the most relevant type of noise,
since it grows the fastest upon an increase of scale for any values ofz and ζ . For this
reason we have to use equation (11) in the determination of the exponents. Requiring scale
invariance of the surface amounts to setting the left-hand sides of the above equations to
zero. Using equations (9)–(11), we find the exponents

z = 4 ζ = 1 χ = 1. (14)

This means that a growing surface described by the linear version of equation (7) can only
be scale-invariant if the two spatial coordinates are rescaled with the same scaling factor
b. Then, the surface fluctuations are governed by the isotropic version of equation (7) with
λ‖ = 0 andλ⊥ = 0.

The full (nonlinear) equation (7) is dealt with along the lines described in [15, 17].
Wavenumbersbπ/a 6 |k⊥| 6 π/a andbχπ/a 6 |k‖| 6 π/a, wherea is the lattice constant
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parallel to the surface, are integrated out (a is set to 1 for convenience). This is done in
a one-loop approximation published in detail elsewhere [18]. The resulting renormalized
parameters are then rescaled according to equation (8). It turns out thatF , λ‖, andλ⊥ are
not renormalized. The corresponding flow equations are

dλ‖
d`
= λ‖(z− 4χ + ζ ) (15)

drλ
d`
= rλ(1− χ) (16)

and equation (11), whererλ ≡ λ‖/λ⊥. Those three equations already fix the exponents to
be

z = 10
3 and ζ = 2

3 (17)
if the system is scale invariantand if λ‖, λ⊥ 6= 0. These are the values for the isotropic
conserved KPZ equation ind = 2 [19, 13, 20] in one-loop order. (In two-loop order they
are slightly modified [21].)

The one-loop corrections to the parameters do not depend onµ [18]. Thus, the
corresponding term does not play a role in the determination of the surface fluctuations—as
in the linear case. (Interestingly this does not hold for a related deterministic nonlinear
equation which exhibits deterministic chaos [22].) For this reason, we setµ = 0 in the
following.

A remark on the noise renormalization is in order. The nucleation noiseis renormalized
and the corresponding flow equation reads

dN
d`
= N [z− 2ζ − 6]+ g⊥f (κ‖, κ⊥, λ‖, λ⊥,F ,D,N ) (18)

with g⊥ ≡ (2π)−2Fλ2
⊥/κ

3
⊥. f is non-negative for non-negativeF or D [18]. This means

that, even if nucleation noise was absent(N = 0) initially, this type of noise would
automatically be generated by deposition and diffusion noise—which is immediately clear
in the microscopic picture. As mentioned above, however, we utilize equation (11) for the
determination of the exponents.

κ‖ andκ⊥ also are renormalized. This can be discussed most conveniently by considering
the flow equations forrκ andg⊥:
drκ
d`
= g⊥π

4r3/2
κ (rκ − 1)2

[9(r2
λ − r4

κ )+ r3
κ (26− 8rλ)+ rκrλ(8− 26rλ)

+16(rλ − 1)(r5/2
κ + r3/2

κ rλ)+ r2
κ (r

2
λ − 1)] (19)

dg⊥
d`
= g⊥

[
2− 3

4
g⊥π

9r3
κ + r2

κ (7rλ − 26)− 16r3/2
κ (rλ − 1)+ rκ(10rλ + 1)− rλ

r
3/2
κ (rκ − 1)2

]
. (20)

Note that in the limit ofrλ, rκ → 1, these flow equations reduce to the isotropic case as
obtained in [19, 13]. Now the only important feature of these equations is whether the fixed
point g∗⊥ = 0 is stable. If so, the nonlinearities would vanish on large scales and the growth
exponents would take the values (14) given by the linear equation. This scenario is found
for the anisotropic KPZ equation [11]. Here we wish to find out if the ACKPZ equation
shows the same behaviour.

For fixedrκ , it is clear from equation (20) thatg∗⊥ = 0 is unstable, since dg⊥/d` = 2g⊥
for smallg⊥. Since equations (19) and (20) are coupled, however,g∗⊥ = 0 could in principle
be reached forrλ < 0 if rκ vanishes together withg⊥ in a suitable way, see equation (20).
To see if this is possible, we consider the limitrκ → 0 of (19) and (20),

drκ
d`
= 9πg⊥r2

λ

4r3/2
κ

(21)
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dg⊥
d`
= g⊥

[
2+ 3πg⊥rλ

4r3/2
κ

]
. (22)

To simplify the notation we setrλ = −8/(3π). For an initial conditiong⊥ > r
3/2
κ , the

coupling constantg⊥ will initially decrease, see equation (22). For this decrease to continue,
g⊥/r

3/2
κ > 1 has to hold. Equation (21) then shows thatrκ , and consequentlyg⊥, will

increase again. Consequently, the fixed pointg∗⊥ = 0 is always unstable. Thus, we can
summarize that a change of universality class from the nonlinear to linear equation is not
possible.

Therefore, in this paper it has been argued that the ACKPZ equation describes the
fluctuations of a vicinal surface growing under MBE conditions. The dynamical and the
roughness exponents are those of the isotropic conserved KPZ equation. In particular, the
change from the nonlinear to linear universality class, as observed for the anisotropic KPZ
equation [11], is not found here. Corroboration of these findings in experiments or computer
simulations are left for future research.
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